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batively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of

the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark

mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model

with the tachyon present has a classical solution satisfying all the desired consistency prop-

erties. In this solution chiral symmetry breaking coincides with tachyon condensation. We

identify the parameters corresponding to the quark mass and the chiral condensate and

also briefly discuss the mesonic spectra.
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1. Introduction

The study of connections between gauge theory and string theory in the last decade, follow-

ing the AdS/CFT conjecture [1, 2], has led to the development of new tools for investigat-

ing strong coupling phenomena in gauge theories [3 – 7]. These ‘holographic methods’ have

been used with surprising success in qualitative studies of confinement and chiral sym-

metry breaking in realistic QCD-like gauge theories, although application to real QCD,

which requires quantizing strings moving on highly curved spaces in the presence of RR

backgrounds, is still beyond the currently available tools.

In the context of these holographic methods, a subject that has received a lot of

attention recently is that of chiral symmetry breaking in QCD-like gauge theories. In

holographic models of gauge theories, the Yang-Mills fields arise from massless open string

fluctuations of a stack of ‘colour’ branes. The near horizon, strong coupling limit of a

large number Nc of colour branes has a dual description in terms of a classical gravity

theory. Flavour degrees of freedom are introduced in this setting as the fermionic open

string fluctuations between the colour branes and an additional set of ‘flavour’ branes [8 –

13]. In the probe approximation in which the number of flavour branes, Nf , remains finite

as Nc → ∞, the backreaction of the flavour branes on the background geometry can be

neglected and various phenomena associated with flavour physics studied as classical effects

in the background geometry.

The model of Sakai and Sugimoto [14], which is based on this scenario, has been very

successful in reproducing many of the qualitative features of non-abelian chiral symmetry
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breaking in QCD. In this model, chiral symmetry breaking has a nice geometrical picture.

In the ultraviolet, chiral symmetry arises on flavour D8-branes and D8-branes, which are

located at well-separated points on a circle, while they are extended along the remaining

eight spatial directions, including the holographic radial direction. Chiral symmetry break-

ing in the infrared is signalled by a smooth joining of the flavour branes and antibranes at

some point in the bulk. At finite temperatures, chiral symmetry is restored at or above

the deconfinement transition [16 – 18].

Despite its many qualitative and, remarkably, some quantitative successes [14, 15, 19 –

23], the Sakai-Sugimoto model has some deficiencies. As has been pointed out by many

authors,1 this model does not have parameters associated either with the chiral condensate

or with quark bare mass. In addition, the model ignores the open string tachyon between

D8-brane and D8-brane, which may be reasonable in the ultraviolet where the branes and

antibranes are well separated, but is not so in the infrared where the branes join.2 In

this region one would expect the tachyon to condense. Since the tachyon field takes an

infinitely large value in the true ground state,3 the perturbative stability argument given

in [14], valid for small fluctuations of the tachyon field near the local minimum at the

origin, does not apply.

Recently, it was suggested in [27] that tachyon condensation on a coincident brane-

antibrane configuration describes the physics of chiral symmetry breaking in a better and

more complete way. Unfortunately in this scenario one loses the nice geometric picture

of the Sakai-Sugimoto model for non-abelian chiral symmetry breaking. The aim of the

present work is to develop a model which retains the nice features of the Sakai-Sugimoto

model while overcoming its deficiencies. We argue that this can be done by taking into

account the open string tachyon that stretches between separated D8-branes and D8-

branes. We will show that in our model, chiral symmetry breaking, which is signalled

by joining of branes and antibranes, is accompanied by tachyon condensation, since the

tachyon field takes large values only in the region where the branes and antibranes join.

Furthermore, the tachyon profile provides the necessary parameters to describe both the

quark mass and the chiral condensate.

The organization of this paper is as follows. In the next section we will briefly review the

essential features of the Sakai-Sugimoto model. In section 3 we desribe the modification

in this model required to include the open string tachyon between the D8-branes and

D8-branes. We compute the contribution to the bulk energy momentum tensor of this

system and verify that the backreaction is small everywhere. In this section we also obtain

the classical solution for the brane profile and the tachyon and identify the parameters

associated with the quark mass and the chiral condensate. Mesonic fluctuations around this

classical solution are briefly discussed in section 4. We end with a discussion in section 5.

As this work was nearing completion, the paper [28] appeared on the archive which

also discusses similar issues.

1See, for example [16, 24, 17, 25].
2Actually, even in the ultraviolet region this is not so straightforward, see the discussion in [17].
3For a recent review of this subject, see [26].
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2. The Sakai-Sugimoto model

The Yang-Mills part of this model is provided by the near horizon limit of a set of

Nc overlapping D4-branes, filling the (3 + 1)-dimensional space-time directions xµ (µ =

1, 2, 3 and 0) and wrapping a circle in the x4 direction of radius Rk, with antiperiodic

boundary condition for fermions, which gives masses to all fermions at the tree level (and

scalars at one-loop level) and breaks all supersymmetries. At low energies, the theory on the

D4-branes is (4 + 1)-dimensional pure Yang-Mills with ’t Hooft coupling λ5 = (2π)2gslsNc

of length dimension. At energies lower than the Kaluza-Klein scale 1/Rk, this reduces to

pure Yang-Mills in (3 + 1) dimensions. This is true in the weak coupling regime, λ5 ≪ Rk,

in which the dimensionally transmuted scale developed in the effective Yang-Mills theory

in (3+1) dimensions is much smaller than the Kaluza-Klein scale, which is the high energy

cut-off for the effective theory. In the strong coupling regime, λ5 ≫ Rk, in which the dual

gravity description is reliable, these two scales are similar. Therefore in this regime there

is no separation between the masses of glueballs and Kaluza-Klein states. This is one of

the reasons why the gravity regime does not describe real QCD, but the belief is that qual-

itative features of QCD like confinement and chiral symmetry breaking, which are easy to

study in the strong coupling regime, survive tuning of the dimensionless parameter λ5/Rk

to low values.

Sakai and Sugimoto introduced flavours in this setting by placing a stack of Nf over-

lapping D8-branes at the point x4
L and Nf D8-branes at the point x4

R on the thermal

circle. Massless open strings between D4-branes and D8-branes, which are confined to the

(3 + 1)-dimensional space-time intersection of the branes, provide Nf left-handed flavours.

Similarly, massless open strings between D4-branes and D8-branes provide an equal num-

ber of right-handed flavours, leading to a global U(Nf )L × U(Nf )R chiral symmetry. This

global chiral symmetry is visible on the D8 and D8-branes as chiral gauge symmetry.

In the large Nc and strong coupling limit the appropriate description of the wrapped

D4-branes is given by the dual background geometry. This background solution can be

obtained from the type IIA sugra solution for non-extremal D4-branes by a wick rotation

of one of the four noncompact directions which the D4-branes fill, in addition to wrapping

the compact (temperature) direction. In the near horizon limit, it is given by [4, 29]

ds2 =

(

U

R

)3/2
(

ηµνdxµdxν + f(U) (dx4)2
)

+

(

R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)

,

eφ = gs

(

U

R

)3/4

, F4 =
2πNc

V4
ǫ4, f(U) = 1 − U3

k

U3
, (2.1)

where ηµν = diag(−1, +1, +1, +1) and Uk is a constant parameter of the solution. R is

related to the 5-d Yang-Mills coupling by R3 = λ5α′

4π . Also, dΩ4, ǫ4 and V4 = 8π2/3 are

respectively the line element, the volume form and the volume of a unit S4.

The above metric has a conical sigularity at U = Uk in the U − x4 subspace which

can be avoided only if x4 has a specific periodicity. This condition relates the radius of the
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circle in the x4 direction to the parameters of the background by

Rk =
2

3

(

R3

Uk

)

1

2

(2.2)

For λ5 ≫ Rk the curvature is small everywhere and so the approximation to a classical

gravity background is reliable. As discussed in [29], at very large values of U , the string

coupling becomes large and one has to lift the background over to the 11-dimensional

M-theory description.

Now consider a set of Nf D8-D8-brane pairs in the above background, placed at points

x4
L = l/2 and x4

R = −l/2 respectively on the circle. If Nf is kept fixed as the large Nc

limit is taken, the effect of the flavour branes on the background geometry should be small

and may be treated in the probe approximation. For the simple case of a single D8-D8-

brane pair, the action is

S = −µ8

∫

d9σ e−φ
(

√

−det AL +
√

−det AR

)

,

where µ8 = 1/(2π)8l9s and (AL,R)ab = gMN∂ax
M
L,R∂bx

N
L,R is the induced metric on the brane.

The indices a, b run over the world-volume directions of the branes while the indices M, N

run over the background ten-dimensional space-time directions. Using the static gauge and

assuming l depends on U only, the action becomes

S = −T8V4

∫

d4x

∫

dU

(

U

R

)−3/4

U4
(

√

DL +
√

DR

)

,

where T8 = µ8/gs is the D8-brane tension and

DL = DR ≡ D = f(U)−1

(

U

R

)−3/2

+ f(U)

(

U

R

)3/2 l′(U)2

4
. (2.3)

Here and in the following a prime denotes derivative with respect to U .

In the above setting chiral symmetry breaking has a geometrical description. It is

signaled by the brane-antibrane meeting at an interior point U ≥ Uk, even when they are

well separated asymptotically. This is because in the background geometry (2.1) the branes

have nowhere to end and hence they must meet. This can also be seen by explicitly solving

the equation of motion for l(U) obtained from the above action. This equation is

(

(

U
R

)13/4

√
D

f(U)

4

(

U

R

)3/2

l′(U)

)′

= 0, (2.4)

which has the solution

l(U)

2
= U4

0 f(U0)
1/2

∫ U

U0

dy
f(y)−1

( y
R

)−3/2

√

y8f(y) − U8
0 f(U0)

. (2.5)

The branes meet at the point U = U0, so l(U0) = 0. Moreover, the solution determines the

asymptotic separation l0 of the branes in terms of U0. The case in which there is maximum
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separation between the brane and antibrane, l0 = πRk, is special since in this case l(U) is

independent of U .

In the generic case, the brane-antibrane system looks like a single brane, coming in

from the asymptotic region, turning around near U = U0 and returning back to the position

of the other brane in the asymptotic region. Expanding around the point U = U0, we get

from (2.5)

l(U)

2
=

R3/2

U0

√

f(U0)

(U − U0)
1/2

√

3 + 5f(U0)
[1 + O(U − U0)]. (2.6)

We see that l′(U) ∼ (U − U0)
−1/2 diverges near the turning point of the brane profile, as

required by a smooth joining of the brane with the anti-brane.

3. Sakai-Sugimoto with tachyon

The effective field theory describing the dynamics of a brane-antibrane pair4 with the

tachyon included has been discussed in [31, 32]. The simplest case occurs when the brane

and antibrane are on top of each other since in this case all the transverse scalars are set to

zero. This is the situation considered in [27]. However, in this configuration one loses the

nice geometrical picture of chiral symmetry breaking of the Sakai-Sugimoto model. Since

we would like to retain this geometrical picture, we must consider the case when the brane

and antibrane are separated in the compact x4 direction. This requires construction of

an effective tachyon action on a brane-antibrane pair, taking into account the transverse

scalars. Such an effective action with the brane and antibrane separated along a noncom-

pact direction has been proposed in [31, 32]. A generalization of this action to the present

case when the brane and antibrane are separated along a periodic direction is not known.

However, for small separation compared to the radius of the circle, the action in [32] should

provide a reasonable approximation. In the following we will assume this to be the case.

Then, the effective tachyon action for l(U) ≪ Rk is

S = −
∫

d9σ V (T, l)e−φ
(

√

−det AL +
√

−det AR

)

, (3.1)

(Ai)ab =

(

gMN − T 2l2

Q
gM4g4N

)

∂ax
M
i ∂bx

N
i + F i

ab +
1

2Q

(

(Daτ(Dbτ)∗ + (Daτ)∗Dbτ)

+il(ga4 + ∂ax
4
i g44)(τ(Dbτ)∗ − τ∗Dbτ) + il(τ(Daτ)∗ − τ∗Daτ)(g4b − ∂bx

4
i g44)

)

,

where

Q = 1 + T 2l2g44, Daτ = ∂aτ − i(AL,a − AR,a)τ, V (T, l) = gsV (T )
√

Q. (3.2)

T = |τ |, i = L, R and we have used the fact that the background does not depend on x4.

Also, in writing the above we are using the convention 2πα′ = 1.5

4For simplicity, we will continue to discuss the case of a single flavour, namely one brane-antibrane pair.

Generalization to the multi-flavour case can be done using the symmmetrized trace prescription of [30].
5The complete action also includes Chern-Simons (CS) couplings of the gauge fields and the tachyon to

the RR background sourced by the D4-branes.These will not be needed in the following analysis and hence

have not been included here.
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The potential V (T ) depends only on the modulus T of the complex tachyon τ . It is

believed that V (T ) satisfies the following general properties [26]:

• V (T ) has a maximum at T = 0 with V (0) = T8.

• The normalization of V (T ) is fixed by the requirement that the vortex solution on the

brane-antibrane system produce the correct relation between Dp and D(p− 2)-brane

tensions.

• In flat space for brane-antibrane on top of each other (i.e. for l = 0), the expansion

of V (T ) around T = 0 upto terms quadratic in T gives rise to a tachyon with mass-

squared equal to −π in our conventions.

• V (T ) has a minimum at T = ∞ where it vanishes.

There are several proposals for V (T ) which satisfy these requirements [26], although

no rigorous derivation exists. In view of this, in the following analysis we will avoid using

any specific expression for V (T ), except when needed for explicit numerical calculations. It

will, however, be necessary for us to specify the asymptotic form of the potential for large

T . We will assume that in our parametrization this behaviour is given by V (T ) ∼ e−cT

where c is a positive constant. A potential satisfying this property, in addition to the

properties listed above is [33 – 35]

V (T ) =
T8

cosh
√

πT
. (3.3)

3.1 Backreaction of the flavour branes

Let us now first discuss the backreaction on the background geometry. For this we need to

compute the contribution of the flavour brane-antibrane system to the ten-dimensional bulk

energy momentum tensor. Our starting point is the action (3.1). The energy momentum

tensor is obtained from it by calculating its functional derivative w.r.t. the background

ten-dimensional metric gMN . The precise relation is TMN = 2/
√
−det g δS/δgMN . We

get,

T ab
i = −gsV (T )

√

Qe−φ

√
−det Ai√
−det g

(

A−1
i

)ab

S
, (3.4)

T a4
i = −gsV (T )

√

Qe−φ

√
−det Ai√
−det g

2
(

A−1
i

)ab

S

(

∂bx
4
i − T 2lAb

)

,

T 44
i = −gsV (T )

1√
Q

e−φ

√
−det Ai√
−det g

×

×
[

−8T 2l2 +
(

A−1
i

)ba (
T 2l2(gab + Fab) + ∂ax

4
i ∂bx

4
i + T 2l(Aa∂bx

4
i − a ↔ b)

)

]

,

where i = L (R) denotes the contribution of the D8-brane (D8-brane) and the subscript

‘S’ stands for the symmetric part. Also, we have defined Ab ≡ (ALb − ARb − ∂aθ), where

θ is the phase of the complex tachyon, τ = Teiθ. It is understood that each of the above

expressions must be multiplied by a position space delta-function specifying the location

– 6 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
5

of the brane in the transverse space where its contribution to the ten-dimensional bulk

energy momentum tensor is localized.

Specializing these expressions to the case of the background solution where the gauge

fields are set to zero and T and l are functions of U only, we get

T ab
i = −V (T )

(

U

R

)−3/4
√

DT gab, a, b 6= U,

TUU
i = −V (T )

(

U

R

)−3/4 Q√
DT

,

T 44
i = −V (T )

(

U

R

)−3/4 f−1
(

U
R

)−3/2

√
DT

(

T 2l2 + f

(

U

R

)3/2 l′2

4

)

, (3.5)

and all other components vanish. The quantity DT is defined in (3.7). If T goes to infinity

near the place where the brane and the antibrane meet, all the components of the energy

momentum tensor vanish there because V (T ) → 0 exponentially for large values of T .

Thus the situation is even better than without the tachyon6 and the flavour contribution

to the energy momentum tensor is small everywhere, justifying the probe approximation

for a generic configuration.

Recently a detailed calculation of the backreation of the flavour branes on the geometry

in the Sakai-Sugimoto model has been reported in [40]. In this work the calculation has

been done for the special configuration in which the branes and antibranes are separated

maximally on the circle, i.e. l = πRk. The authors find that, as expected, in this antipodal

case the corrections are indeed small for Nf/Nc small. It would be interesting to extend

their calculation to the generic case with the tachyon present.

3.2 Tachyon condensation as chiral symmetry breaking

We will now look for an appropriate classical solution of the brane-antibrane-tachyon sys-

tem. Let us set the gauge fields and all but the derivatives with respect to U of T and x4
i

to zero. Moreover, we choose x4
L = l/2 and x4

R = −l/2 so that the separation between the

brane and antibrane is l. In this case, in the static gauge the action (3.1) simplifies to7

S = −V4

∫

d4x

∫

dU V (T )

(

U

R

)−3/4

U4
(

√

DL,T +
√

DR,T

)

, (3.6)

where DL,T = DR,T ≡ DT and

DT = f(U)−1

(

U

R

)−3/2

+ f(U)

(

U

R

)3/2 l′(U)2

4
+ T ′(U)

2
+ T (U)2l(U)2. (3.7)

6In the absence of the tachyon, the energy momentum tensor components in (3.5) blow up near the place

where the brane and the antibrane meet. This is, however, not a real singularity since it can be removed

by changing the descrption, for example, to U as a function of l instead of the description in terms of l(U).
7The CS term in the action does not contribute for such configurations.
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The equations of motion obtained from this action are

(

U
13

4

√
DT

T ′(U)

)′

=
U

13

4

√
DT

[

T (U)l(U)2 +
V ′(T )

V (T )
(DT − T ′(U)2)

]

, (3.8)

(

U
13

4

√
DT

f(U)

4

(

U

R

)
3

2

l′(U)

)′

=
U

13

4

√
DT

[

T (U)2l(U) − V ′(T )

V (T )

f(U)

4

(

U

R

)
3

2

l′(U)T ′(U)

]

.

(3.9)

Note that the ‘prime’ on V (T ) denotes a derivative w.r.t. its argument T and not a deriva-

tive w.r.t. U .

This is a complicated set of coupled nonlinear differential equations. To get some

insight into the kind of solutions that are possible, we will first analyse the equations for

large U and for U near the brane-antibrane joining point, where the equations simplify

and can be treated analytically. As in the case without the tachyon, we are looking for

solutions in which the brane and antibrane have an asymptotic separation l0, i.e. l(U) → l0
as U → ∞ and they join at some interior point in the bulk, i.e. l(U) → 0 at U = U0 > Uk.

Moreover, we want the tachyon (i) to vanish as U → ∞ so that the chiral symmetry is intact

in the ultraviolet region and (ii) to go to infinity as U approaches U0 so as to reproduce

correctly the QCD chiral anomalies [27].

3.2.1 Solution for large U

We are looking for a solution in which l(U) approaches a constant l0 and T becomes small

as U → ∞. Let us first consider the equation (3.8). For small T one can approximate

V ′/V ∼ −πT .8 If T and l′ go to zero sufficiently fast as U → ∞ such that to the leading

order one might approximate DT ∼
(

U
R

)−3/2
, then (3.8) reduces to

(

U4 T ′(U)
)′

= l20 U4 T. (3.10)

This equation can be solved exactly with the general solution

T (U) =
T+

U2

(

1 +
1

l0U

)

e−l0U +
T−

U2

(

1 − 1

l0U

)

el0U , (3.11)

The solution with the exponential fall off satisfies the approximations under which (3.10)

was derived for any large value of U . The exponentially rising solution will, however,

eventually become large and cannot be self consistently used. This is because for sufficiently

large U , there is no consistent solution for T which grows exponentially or even as a power-

law to the original equations (3.8) and (3.9), if we impose the restriction that l(U) should

go to a constant asymptotically. This puts a restriction on the value of U beyond which

the generic solution (3.11) cannot be used. The most restrictive condition comes from

the approximation DT ∼
(

U
R

)−3/2
. This requires the maximum value, Umax, to satisfy

U
5/2
maxe−2l0Umax ≫ l20T

2
−R−3/2. At values of U much larger than this, only the exponentially

falling part provides a consistent solution.

8This follows from the general properties of the potential discussed in section 3.

– 8 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
5

Even though (3.11) does not represent a truly asymptotic solution, its usefulness lies in

the fact that most quantities of interest that involve the tachyon, like pseudoscalar meson

masses, receive maximum contribution from intermediate values of U and hence from this

solution. This is because the exponentially falling tachyon potential kills off contribution in

the infrared region and the exponentially falling tachyon does so in the ultraviolet region,

so the maximum contribution comes from intermediate region. Thus physical qantities are

sensitive to both the parameters of this solution. It is natural to associate T− with the

quark bare mass since this parameter comes with the growing solution and T+ with the

chiral condensate because it is associated with the normalizable solution. More evidence

for this will be given in the next section.

The fact that the tachyon takes small values for large U makes it irrelevant for the

leading behaviour of l, which can be extracted from (3.9) by setting the r.h.s. to zero. The

resulting equation is precisely (2.4) with a similar solution

l(U) = l0 − l1U
−9/2 + · · · (3.12)

where l1 is positive so that the branes come together. For Sakai-Sugimoto without the

tachyon, l1 = 2
3RkU

4
0

√
Ukf0, where f0 = f(U0).

Is there a solution in which T vanishes asymptotically as a power law? Suppose there

is such a solution, T (U) ∼ U−α. If α > 3/4 and l vanishes fast enough, we may once again

approximate DT ∼
(

U
R

)−3/2
. As before, we then conclude that T vanishes exponentially,

which contradicts our assumption that T vanishes as a power law. If α < 3/4 and l′ vanishes

fast enough, then we must approximate DT ∼ T 2l20. One can see immediately from (3.8)

that this also leads to a contradiction. Finally, suppose asymptotically l′ vanishes so

slowly that it is the l′2 term that dominates in DT and so we must approximate DT ∼
(U/R)3/2l′(U)2/4. Once again it is easy to see from (3.8) that there is no consistent

solution. We thus conclude that the only solution in which l goes to a nonzero constant

asymptotically and T vanishes is the one given by (3.11), (3.12) (after dropping the growing

part of T for large enough U).

3.2.2 Solution for U ∼ U0

Here we are looking for a solution in which l → 0 and T → ∞ as U → U0. Let us assume

a power law ansatz, namely

l(U) ∼ (U − U0)
α, T (U) ∼ (U − U0)

−β .

For a smooth joining of the brane and antibrane at U0, the derivative of l must diverge at

this point, which is ensured if α < 1. Since for this ansatz T ′2 is the largest quantity for

U → U0, we can approximate DT ∼ T ′(U)2. Moreover, using the asymptotic form of the

potential V (T ) ∼ e−cT for large T , we get V ′(T )/V (T ) ∼ −c. Putting all this in (3.8) we

see that the leading term on the l.h.s. is a constant. The first term on the r.h.s. vanishes as

a positive power of (U − U0). For consistency with the l.h.s. we then find from the second

term on the r.h.s. that (i) if β > 1, we must have β = 1+2α and (ii) if β < 1, we must have

β = 1 − 2α. β = 1 is not allowed since we must have 0 < α < 1. Analyzing equation (3.9)
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similarly, we find that in case (i) the l.h.s. of this equation vanishes as a positive power

of (U − U0). This is consistent with the r.h.s. only if β = 2, which then gives α = 1/2.

In case (ii) it is the first term on the r.h.s. that vanishes as a positive power of (U − U0).

Consistency with the r.h.s. then requires β = 0, which is however inconsistent with our

approximations. Hence, α = 1/2, β = 2 is the only consistent solution we get which has

l → 0 and T → ∞ as U → U0. This ansatz can now be checked directly and the various

coefficients fixed. We get

l(U) =
1

v1

√

26

U0f0

(

U0

R

)−3/4

(U − U0)
1/2 + · · · , (3.13)

T (U) =
v1

4
f0

(

U0

R

)3/2

(U − U0)
−2 + · · · , (3.14)

where v1 is a constant which equals the limiting value of −V ′(T )/V (T ) as T → ∞. Note

that, given the potential, the normalizations of both l and T get fixed in terms of U0.

It is important to mention that this solution exists only for potentials which have the

asymptotic behaviour V (T ) ∼ e−cT γ
for large T , with γ < 2.9

The existence of the solution (3.14), (3.14) shows that tachyon condensation on the

flavour brane-antibrane system is intimately connected with chiral symmetry breaking.

For completeness, we note that there exists another solution in which T does not

diverge as U → U0. Let us assume that T goes to a nonzero constant as U → U0. In this

case we can approximate DT ∼ f(U)(U/R)3/2l′(U)2/4. Substituting in (3.8) we see that

the l.h.s. diverges as (U −U0)
−α. The first term on the r.h.s. vanishes as a positive power,

but the second term diverges as (U −U0)
α−1. For consistency we must have α = 1/2. The

resulting solution

l(U) =
4

U0

(

R3

f0(5f0 + 3)

)1/2

(U − U0)
1/2 + · · · , (3.15)

T (U) = t0 +
2

(5f0 + 3)

(

R3

U0

)1/2
V ′(U0)

V (U0)
(U − U0) + · · · (3.16)

also satisfies (3.9). Note that no special condition was required for the tachyon potential

to get this solution; this solution exists for any potential.

To get a complete solution, one needs to use numerical tools since the equations cannot

be solved analytically. The numerical calculations are in progress and will be reported in

a forthcoming longer version of this work [42].

9This condition is not satisfied by the potential obtained by a boundary string field theory computa-

tion [36 – 39] for which γ = 2. This is not necessarily a contradiction and probably indicates a nontrivial

field redefinition that relates fields we are using here to those used in the boundary string field theory. A

similar observation has been made earlier in connection with the tachyon kink and vortex solutions on the

brane-antibrane system in [31]. Note, however, that a calculation of S-matrix elements of tachyons and

gauge fields reported in [41] seems to favour the boundary string field theory potential.
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4. The meson spectra

In this section we will discuss the spectra for various low spin mesons which are described

by the fluctuations of the flavour branes around the classical solution. The action for the

fluctuations of the gauge fields can be computed from (3.1). Parametrizing the complex

tachyon τ in terms of its magnitude and phase, τ = Teiθ, we get

∆Sgauge = −
∫

d4x dU

[

a(U)A2
U + b(U)A2

µ + c(U)
(

(F V
µν)

2 + (FA
µν)

2
)

+ e(U)FA
µUAµ

+d(U)
(

(F V
µU )2 + (FA

µU )2
)

]

, (4.1)

a(U) = V4V (T )U4

(

U

R

)−3/4 T 2

√
DT

, (4.2)

b(U) = V4V (T )U4

(

U

R

)−3/4
√

DT

(

U

R

)−3/2 T 2

Q

(

1 +
f2T 2l2l′2

4DT

(

U

R

)3
)

, (4.3)

c(U) = V4V (T )U4

(

U

R

)−3/4
√

DT
1

8

(

U

R

)−3

, (4.4)

d(U) = V4V (T )U4

(

U

R

)−3/4(U

R

)−3/2 Q

4
√

DT
, (4.5)

e(U) = V4V (T )U4

(

U

R

)−3/4 fT 2ll′

2
√

DT
. (4.6)

Here F V is the field strength for the vector gauge field V = (A1 + A2) and FA is the field

strength for the gauge-invariant combination of the axial vector field and the phase of the

tachyon, A = (A1 − A2 − ∂θ).

The gauge field Vµ(x, U) gives rise to a tower of vector mesons while the fields Aµ(x, U)

and A(x, U), which are gauge invariant, give rise to towers of axial and pseudoscalar mesons.

Notice that the coefficients a(U), b(U) and e(U) vanish if the tachyon is set to zero. In

the absence of the tachyon the vector and axial vector mesons acquire masses because of

a nonzero d(U), but there is always a massless “pion”.10 The presence of the tachyon is

thus essential to give a mass to the “pion”. Also note that with the tachyon present, the

masses of the vector and axial vector mesons are in principle different.

In the following, we will be using the gauge VU = 0. As we have already noted, AU is

gauge invariant. Expanding in modes, we have

Vµ(x, U) =
∑

m

V (m)
µ (x)Wm(U)

Aµ(x, U) =
∑

m

A(m)
µ (x)Pm(U),

AU (x, U) =
∑

m

φ(m)(x)Sm(U), (4.7)

10Strictly speaking, for the U(1) case under discussion, this pseudoscalar is the η′. It is massless here

because of the Nc → ∞ limit in which we are working.
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where {Wm(U)}, {Pm(U)}s and {Sm(U)} form complete sets of basis functions. The fields

{V (m)
µ }, {A(m)

µ } and {φ(m)} form towers of vector, axial-vector and pseudoscalar mesons

in the physical (3 + 1)-dimensional space-time. Note that ∂µA
(m)
µ and φ(m) mix. After

suitably shifting A
(m)
µ by an appropriate linear combination of ∂µφ(m)s, the mixing can be

removed. The spectrum may then be read off from the quadratic action

∆Sgauge = −
∫

d4x
∑

m

[

1

4
F V (m)

µν F V (m)µν +
1

2
λV

mV (m)
µ V (m)µ +

1

4
FA(m)

µν FA(m)µν

+
1

2
λA

mA(m)
µ A(m)µ +

1

2
∂µφ(m)∂µφ(m) +

1

2
λφ

mφ(m)φ(m)

]

, (4.8)

where in the vector and axial vector sectors we have imposed the orthonormality conditions
∫

dU c(U)Pm(U)Pn(U) =
1

4
δmn =

∫

dU c(U)Wm(U)Wn(U), (4.9)

and the eigenvalue equations

−
(

d(U)W ′

m(U)
)′

= 2λV
mc(U)Wm,

−
(

d(U)P ′

m(U)
)′

+

(

b(U) +
1

2
e′(U)

)

Pm(U) = 2λA
mc(U)Pm(U). (4.10)

In the pseudoscalar sector, we need the conditions
∫

dU a(U)Sm(U)Sn(U) =
1

2
λφ

mδmn

(

K − 1

2
JTL−1J

)

mn

=
1

2
δmn, (4.11)

where

Jmn =

∫

dU [e(U)Pm(U) − 2d(U)P ′

m(U)]Sn(U),

Kmn =

∫

dU d(U)Sm(U)Sn(U),

Lmn = λA
mδmn (4.12)

One can also consider fluctuations in T and l. There is mixing in this sector also. These

fluctuations give rise to towers of scalars whose masses depend on the background value of

the tachyon. We defer details of these calculations to a forthcoming publication [42].

4.1 Quark mass and chiral condensate

In this section we will give evidence for the identifications made below (3.11) for the

parameters T± with the chiral condensate and quark mass. We note that for T (U) = 0,

a(U) vanishes and hence λφ
m, given by the first of (4.11), also vanishes. We see once

again that a nonzero tachyon is required for nonzero pseudoscalar masses. Furthermore,

since V (T ) vanishes exponentially for large T , the region of U in which T is small, but

not too small, dominates the integral in (4.11). This is the intermediate region discussed
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below (3.11). In this region T can be essentially replaced by (3.11). Consider the lightest

mass state. For this state, we have

1

2
λφ

0 =

∫

dU a(U)(S0(U))2 (4.13)

The r.h.s. of this equation involves the quantity a(U) which is proportional to T 2. Us-

ing (3.11) and retaining to lowest order in the quark mass parameter, which we have iden-

tified with T−, we see that this gives λφ
0 ∼ T−T+.11 This firms up the identification of T+

with the chiral condensate. This relation is then essentially the Gell-Mann-Oakes-Renner

relation.

5. Discussion

In this paper we have proposed a modified Sakai-Sugimoto model which includes the open

string tachyon stretching between the flavour branes and antibranes. Taking the tachyon

into account is essential for the consistency of the setup. Our modification preserves the

nice geometric picture of chiral symmetry breaking of the Sakai-Sugimoto model and at the

same time relates chiral symmetry breaking to tachyon condensation; the tachyon becomes

infinitely large in the infrared region where the joining of the flavour branes signals chiral

symmetry breaking.

We have shown that the tachyon condensate is essential to give the goldstone bosons

nonzero masses. We have identified parameters in the tachyon field profile which correspond

to the quark bare mass and chiral condensate. We also briefly discussed different types

of low spin meson fluctuations. A more complete discussion with numerical estimates for

masses etc is under preparation.

There are several directions in which the present ideas can be extended. It would be

interesting to discuss this model at finite temperature and describe the chiral symmetry

restoration transition and study the phase diagram in some detail. The connection with

tachyon condensation seems fascinating and a deeper understanding would be useful. Fi-

nally, baryons have been discussed in the Sakai-Sugimoto model. It turns out that they

have a very small size. This may change in the presence of the tachyon. This is because in

the presence of the tachyon, the flavour energy momentum tensor is concentrated far away

from the infrared region where the branes meet. It would be very interesting to investigate

whether this effect actually makes a difference to the baryon size.
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